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Abstract 
32553-' 

Analysis has been made of the radiation measurements made by 
the Tiros meteorological satellites during 1962 and 1963. Data for 10 
months have been analyzed to obtain information on the latitudinal and 
time variations of the albedo of the earth and the outgoing terrestrial  
radiation in the infrared. 

The albedo values thus obtained give a mean reflectivity of the 
earth-atmosphere system of 31 percent for the area between the lati- 
tudes 60 "N and 60 O S .  The oceanic regions contribute *cent while '30 
the land areas, 34 percent. A conspicuously high albedo of -45 percent 
is noted over the desert regions of the Sahara and Arabia which implies 
a slightly negative radiative balance of these regions. 

The latitudinal and monthly variation in the total outgoing radi- 
ation indicates a substantially high radiation being emitted in August, 
September and October from the subtropical belts in both the hemispheres. 

The albedo values a re  used to derive the effective incoming radi- 
ation from the sun which is then combined with the estimates of the 
outgoing radiation in the infrared to obtain monthly mean radiative energy 
balance of the earth-atmosphere system for each 10 " latitude belt be - 
tween 60"N and 60"s. 

An attempt is then made to derive, from these data, the energy 
available for transport by the atmosphere and oceans. For this purpose 
we algebraically add to  the radiation balance obtained from Tiros the 
two other important parameters, viz., storage of energy by oceans, 
land and atmosphere, and the net latent heat. The heat stored in the 
oceans for each month and for each 10" latitudinal belt is deduced from 
the climatological estimates of the variations in  the ocean temperatures 
around the globe. 
calculated from the climatological estimates of precipitation and 
evaporation. 

The net latent heat released in the atmosphere is 

The s u m  of these three energy terms, viz., the radiation balance, 
the storage and the net latent heat results in the estimates of heat which 
is available, at each latitudinal belt, for meridional transportation by 
oceans and by the atmosphere. The energy distribution patterns indicate 
that ocean transport may be much more significant in the southern hemi- 
sphere than in the northern hemisphere, particularly during the months 
of February through May. 

V 



1. Background 

Solar energy, the primary source for driving the atmospheric 

6 -2 -1 heat engine, has a f l u x  of 1.4 x 10 ergs cm sec or  2 calories 

cm min at the top of the earth's atmosphere. Par t  of this radiation -2 -1 

is reflected back to space mainly by the clouds. 

earth has been estimated by various authors and the values range be- 

tween 35 and 40 percent (Danjon, 1936; Fritz, 1949; AngstrBm, 1963). 

The remaining 60 to 65 percent of the solar energy is absorbed in the 

atmosphere and at the surface of the earth. 

The albedo of the 

The earth-atmosphere system radiates back to space in the far 

infrared. Over long periods of time, of the order of years, the total 

amount of radiation thus emitted back to space equals the total incom- 

ing solar radiation. This long period global radiative balance may be 

expressed a s  follows: 

s+(1 - A )  = Es = E = U T ,  4 
r 

where S. C. is the solar constant at  the distance of the earth 

(2  cal cm-' min ), 

i s  the effective incoming solar radiation, Er is the total outgoing 

radiation from the earth -atmosphere system in the far infrared, 

is the effective temperature of the earth, and CT is the Stefan- 

Boltzmann constant. 

-1 
ES 

Te 

A is  the average albedo of the whole globe, 

Over a short period of time, and for  any given region of the 

globe, however, the difference between the incoming and outgoing 

radiation (Es - Er),  known as  the local radiation balance of the 
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earth-atmosphere system, is not necessarily zero and may be a finite 

quantity. 

season and is generally known to be positive near the equator and nega- 

tive at the poles (Simpson, 1929; Houghton, 1954; London, 1957). 

This radiation balance, R, varies with latitude, longitude, and 

The radiation imbalance (R # 0) over a given region may mani- 

fest itself in three different ways: (1) by a change in the combined heat 

content of the oceans or land and of the atmosphere; (2) by an increase 

or  decrease of the latent heat; and (3) by transport of energy by ocean 

and air currents from or  to this region. The following equation ex- 

presses the local heat balance of the earth-atmosphere system: 

R = S +- LE t T (2) 

where S is the storage of energy which itself has three components: 

So, SL, SA, being the storage in oceans, land, and the atmosphere. Of 

these, the storage in the oceans is the most significant, and can have an 

approximate magnitude of the radiation balance itself (Gabites, 1950; 

F r i t z ,  1958). SL and SA a re  usually 10 percent of S 0 (Gabites, 1950). 

LE is the net latent heat available in the atmosphere, being the differ- 

ence between the arriount of energy spent in evaporation and that released 

by condensation in the atmosphere. T is the transport of heat by ocean 

currents and by winds. 

Studies on the radiation balance of the earth -atmosphere system 

date back to  1929 when Simpson, for the first  time, derived a geographi- 

cal distribution of the radiative energy balance over the whole globe for 

different seasons. 

equilibrium and showed a large positive radiation balance over desert 

regions in summer. 

He concluded that the globe as  a whole is in radiative 

These findings have been reexamined in recent 
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years by Gabites (1950), Houghton (1954), Budyko (1956), London (1957), 

F r i t z  (1958), Davis (1963), and others. Of these, Gabites (1950) and 

Fri tz  (1 958) investigated the problem of ocean storage in great detail 

and were able to compute the net amount of heat available in the atmo- 

sphere for transport across latitudes: a parameter significant in the 

study of general circulation. 

The studies cited above were based on the ground observations 

of the incoming solar radiation and on the theoretical estimates of the 

outgoing radiation in the infrared. 

of heat balance a r e  the most important and now, with the advent of 

These two parameters in the studies 
,. 

meteorological satellites, we a re  in a position to reexamine this question 

with much more extensive coverage of the globe and a frequency of obser- 

vation never before achieved. 

2. Radiation experiments by meteorological satellites 

Explorer VII, launched in 1959, was the first satellite to carry 

an experiment of meteorological significance (Suomi, 1958, 1961). The 

instrumentation consisted of white and black hemispheric sensors. 

black hemispheres responded to  both the short wave solar radiation 

The 

reflected by the earth and to the long wave terrestrial  radiation, while 

white sensors a re  only sensitive to the far infrared radiation. 

bining the measurements made by the two sensors, an estimate of the 

reflected solar energy and the outgoing terrestrial  radiation can be 

obtained. 

By com- 

Though the orbit of Explorer VI1 covered the major part of the 

globe, viz. 50"N to 5OoS, the satellite was  not equipped for storing the 
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data, and radiation measurements were only available in the vicinity of 

the interrogating stations. Despite this disadvantage, several months of 

exploitable data were accumulated over different regions of the globe, 

and have been the subject of a series of studies on the distribution of the 

outgoing terrestrial  radiation over the globe (Suomi, 1961). The principal 

findings from these measurements confirmed the hitherto expected and 

theoretically calculated results that the regions of high pressure,which 

a re  usually cloudfree, emit large amounts of far infrared radiation to 

space. 

Major improvements in the radiation instrumentation were 

incorporated in Tiros 11, launched on November 23, 1960, and in the 

subsequent Tiros series of satellites. 

tained, in addition to the Explorer -type instrument, a medium resolution 

scanning radiometer. 

siderable detail by Bandeen et -- al. (1961) and by Astheimer et -- al. (1961). 

The radiometers measure the absolute intensities of the emitted t e r -  

restrial  radiation and of the solar radiation as reflected by the earth. 

These measurements a re  made in five selected narrow spectral intervals 

in the visible and in the far infrared. 

sponse of the three infrared channels of the Tiros radiometer as a 

function of wavelength. 

percentage transmissivity of the earth's atmosphere in the far infrared. 

Tiros 11, 111, IV, and VI1 con- 

These radiometers have been described in con- 

Figure 1 shows the spectral r e -  

In the same figure, the dotted curve shows the 

The spectral intervals in the infrared to which individual 

channels respond have been so selected as  to give information regarding 

the temperatures in different regions of the atmosphere. 

responding to  the energy in the 6 to  

The channel 

6.5 p interval is centered in the 
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spectral region where water vapor has a strong absorption band. 

channel therefore records emission only from the upper troposphere. On 

the other hand, in the 8 to 12 p spectral interval, the atmosphere is 

largely transparent. 

interval (Channel 2)  records energy emitted from very near the ground. 

The third infrared channel, measuring energy in the 7 to 30 p interval, 

records approximately 80 percent of the total radiation emitted by the 

earth and the atmosphere and can therefore be used in the study of the 

total outgoing terrestrial  radiation. 

This 

The satellite radiometer "looking" in this spectral 

Clouds a re  usually assumed to be completely opaque to wave- 

In the presence of clouds, therefore, both the lengths longer than 3p. 

radiometric channels measuring radiation in the 8 to 12 p and 7 to 

30 p. intervals record energy radiated by the atmosphere from above the 

cloud tops. 

Fo r  the measurement of reflected solar radiation in the visible 

and near infrared, the Tiros radiometer is equipped with two other chan- 

nels, the first sensitive in the 0.5 to  0.7 p wavelength interval and the 

other in the 0.2 to  5 p. interval. Measurements in these channels can be 

used to derive information on the albedo of the earth and consequently on 

the amount of solar radiation absorbed by the earth -atmosphere system. 

Recent analyses of the radiation data obtained from Tiros have 

indicated that there has been considerable degradation in the instrumental 

response, thereby introducing an e r ro r  in the observed radiation values. 

Because the Tiros satellites do not have on -board calibration facilities, 

the corrections to  these degradations have to  be determined indirectly. 

Bandeen (private communication) has studied this problem in great 
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detail and has communicated the correction factors for individual chan- 

nels in each one of the satellites. 

assumption that the quasi -global (60 "N to  60 OS) mean values of the 

radiation reflected in the short wave and emitted in the long wave regions 

remain constant over long periods of time (several months). 

These corrections a re  based on the 

2.1 Orbital characteristics 

The inclination of the orbits of Tiros 11, 111, and IV was 48" 

and that of Tiros VIIS 58". 

in the first three satellites, to about 55"N and S, and in the case of 

Tiros VIIS to 65"N and S. 

Coverage of the globe is therefore limited, 

The Tiros satellites are spin-stabilized which implies that the 

direction of the spin axis remains fixed in space. 

radiometer is installed in the satellites at an angle of 45" to the spin 

The five-channel 

axis and has a field of view of a 5' cone. This field of view corresponds 

to an a rea  on the surface of the earth of 60 x 60 km when the radio- 

meter is viewing vertically down. Because the spin axis is fixed in 

space, there is a limitation on the coverage of the data for the periods 

of the orbits when the radiometer is not looking at the earth. Figure 2 

shows the scan pattern of the Tiros radiometer. 

The interrogating stations were, until now, situated only in the 

United States, and since the satellite has a capacity to store data for only 

one orbit, the data for three of the fourteen orbits each day is lost. 

Also, the orbit of the satellite precesses in right ascension at  the rate 

of about 6"  day-l. For this reason, the measurements of the reflected 

solar radiation may be confined to only one hemisphere for a period of 

time of the order of several weeks. However, in nine weeks, the 

7 



Figure 2. Geometry of the scanning motion of the 
medium resolution radiometer and of the 
viewing area of the low resolution radiometer. 
(After Bandeen et a l . ,  1961. ) - 
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precession cycle around the globe is completed and the visible channels 

can cover the whole globe. 

2.2 Albedo measurements from satellites 

Two of the five channels of the Tiros radiometers a re  sensitive 

in  the spectral range 0.2 to 5 p and 0.5 to 0.75 p, respectively. 

amount of energy measured by the radiometer in each channel yields the 

fraction of the solar radiation, in the corresponding spectral interval, 

reflected back to space in the direction of the satellite by the earth- 

atmosphere system. The measurements of the reflected energy in the 

002 to  5 p channel, which covers practically the entire solar spectrum, 

a r e  used in the present study to derive the albedo, A, by the following 

expre s sion: 

The 

reflected energy measured in 0.2 to 5p 
(total solar energy in 0.2 to 5p)cos z 

A = -  

where z is the zenith angle of the sun at the time and point of obser- 

vation. Only those measurements a re  included for which the solar 

zenith angle was less than 60" and the satellite nadir angle (angle 

between the line of view of the radiometer and the local radius vector 

of earth) less than 45". It i s  also assurried that the scattering of the 

solar radiation by the earth 's  surface and by the atmosphere is iso-  

tropic. 

1964) and the values derived here may eventually require small 

corrections . 

This assumption may not be valid at high phase angles (Arking, 

The individual albedo values thus calculated were averaged in 

the region of 5" latitude by 5@ longitude grids for the period February 

through June 1962. In Figure 3 we show the global distribution of the 

albedo thus deduced from the measurements made by Tiros IV. The 

9 
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two triangular regions comprising parts of South America and Central 

Asia have been left blank because data a r e  not available for these areas. 

There a re  about 500 observation points in each 5" by 5' grid, and only 

those grids which had more than 100 readings have been included in this 

figure. The albedo values shown in Figure 3 are in steps of 10 percent, 

ranging from a value of less than 10 percent (darkest shade) to 60 per-  

cent (lightest shade). 

An examination of Figure 3 shows the following interesting 

features : 
L 

(1) The oceanic regions, especially in the subtropics, show albedo 

of the order of only 20 percent. 

siderably higher, of the order of 30 to 40 percent. 

albedo of the oceans is L. percent while that of the land areas is 34 per- 

cent. 

latitudes 60"N and 60°S,  is 31 percent. 

The albedo of the land areas is con- 

On an average, the 
30 

The mean reflectivity of the earth-atmosphere system, between 

(2)  The patterns of albedo appear to follow the continental boundaries 

and strong gradients of albedo a r e  observed at the coast lines. 

southern hemisphere, which is mostly oceanic, the albedo values do not 

show much longitudinal variation, except in the case of the subtropical 

belt where we notice, as  an almost permanent feature, three regions of 

low albedo situated over the three oceans. 

In the 

(3) The Sahara and Arabian deserts show a conspicuously high 

albedo, about 45 percent, for this five month period. 

comparable with the albedos measured over Central Africa and South 

This value is 

Americs which a r e  regions of high cloudiness. More detailed 

nation of the albedo values recorded over these desert regions 

exami - 

for 
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individual months show persistently high values. 

These results are also supported by measurements made by 

Tiros I11 for which good data for the visible channels are available only 

for a 10-day period between July 12 and July 21, 1961. 

W e  have also analyzed the visible channel data f rom Tiros VI1 

Again the corresponding to the period of June through November 1963. 

absolute values a re  uncertain due to the instrumental degradation noticed 

for  this satellite also, but after applying an appropriate degradation cor - 
rection, we find relatively high values over the Sahara for this period 

also. 

in this case, 40 percent. 

Africa and Arabia have an average albedo of 40 to 45 percent throughout 

the year. 

The average albedo for the five month period over the Sahara is, 

These results suggest that the deserts of North 

This result, the high albedo of deserts, implies that the amount 

of solar radiation actually absorbed by the land and the atmosphere in  

these regions may be considerably less than hitherto believed. 

parison of the value of incoming solar radiation with the amount of infra- 

red radiation emitted by these regions, as measured by the same satellite, 

indicates that the radiative balance of the land-atmosphere system for the 

Sahara may be zero or even slightly negative. 

diction with the earlier published results which were based on the as  - 

sumption that the albedo of the Sahara is about 20 to 25 percent 

(Buettner, 1929), giving a positive energy balance over the region 

(Simpson, 1929; Budyko, 1956; Rasool, 1964). 

A com- 

This result is in contra- 

In a recent study on the climate of the Sahara, Dubief (1959) 

reports an albedo value of as high as 44 percent measured by Failletaz 

12 



over selected regions of the desert. Dubief also suggests that large 

sandy areas may have still higher albedo. 

to be consistent with the measurements of Failletaz. 

Results from Tiros seem 

3. Radiative energy balance 

The chief objective of this analysis is to use the radiation 

data acquired by Tiros satellites to derive time and latitudinal variations 

of the radiation balance of the earth-atmosphere system. 

balance is made up of the difference between the incoming solar radiation 

The radiation 

3.1 Incoming solar radiation 

With the combination of 

February 8 t o  June 30, 1962 and 

the albedo data from Tiros 

from Tiros VII, June 19 to 

and the outgoing terrestrial  radiation in the infrared. 

20, 1963, we a re  now in a position to calculate the incoming 

Iv8 

November 

radiation 

for the 10-month period of February through November. However, in 

matching the data from two separate years, it is found that the albedos 

for the month of June in 1962 and 1963 agree with one another within 

5 percent. So we have adopted the data of February 12 to June 30, from 

1962 and July 1 to November 20 from 1963 to get the total 10-month 

period. 

The incoming radiation, Es, in a given 10" latitudinal belt for 

each month, is calculated from the expression: 

E S = E ( 1  - A )  (4) 

where E is the average radiation flux incident at the top of the atmo- 

sphere for the month and 

latitudinal belt. 

is the monthly mean albedo for the 

13 



Figure 4 shows the distribution of the incoming solar radiation 

as a function of latitude and month between 60"N and 60"s  in 
-2 -1 

cal cm day . 
The middle and subtropical latitudes in the northern hemisphere 

receive conspicuously high radiation in the months of June and July. 

may be noted that the subtropical latitudinal belt in the southern hemi- 

sphere receives more radiation in the local summer than in the northern 

hemisphere. This is both because of the large oceanic regions in this 

hemisphere, which have a relatively low albedo as shown in Figure 3, 

and also because of slightly more solar radiation incident at the top of 

the atmosphere over the southern hemisphere summer. 

It 

3.2 Outgoing terrestrial  radiation 

The other component of the radiation balance is the outgoing 

terrestrial  radiation in the far infrared. Tiros data has so far been 

used by several authors to determine the latitudinal distribution of out - 

going radiation for specific periods (Winston and Rao, 1962; Prabhakara 

and Rasool, 1963; Nordberg et -- al., 1962; House, 1964). 

in the northern hemisphere derived from these measurements have been 

fairly consistent with the earlier estimates made by London (1957). 

with the availability of data from Tiros IV and VII, and applying the 

degradation corrections communicated by Bandeen, we calculate the 

total outgoing radiation for each 10" latitudinal belt for 10 individual 

months, February through June 1962 and July through November 1963. 

Figure 5 shows the latitudinal and time variations of the total outgoing 

radiation in cal cm day . 

The values 

Now 

-2 -1 

The variation in the outgoing radiation with latitude is  small 
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Figure 4. Latitude and time distribution of the incoming solar 
radiation in cal cm-2 day-' derived from the albedo 
measurements made by Tiros IV and VII. 
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Figure 5. Latitude and time distribution of the outgoing 
terrestrial  radiation in the far infrared in 
cal cm-a day' derived from measurements 
made by Tiros IV and VII. 
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and the change with season is still smaller. 

going radiation situated on either side of the equator a re  noted. They 

both occur in the months of August, September and October, although 

the seasons a re  opposite in the two hemispheres. Also the latitude of 

the intertropical convergence zone (region of the equatorial minimum 

in the outgoing radiation) changes as expected from 5"s  in February 

to about 5"N in July and August. 

The two weak highs of out- 

3.3 Energy balance of the earth-atmosphere system. 

Combining Figures 4 and 5 ,  we now obtain the radiation balance 

of the earth-atmosphere system shown in Figure 6. Because the total 

outgoing terrestrial  radiation does not vary considerably with season 

and with latitude between 60 ON and 60 O S ,  the radiation balance of the 

earth-atmosphere system shows a pattern similar to that of the incoming 

radiation (Fig. 5). The main excess of incoming over outgoing radiation 

occurs in the latitudes 20 to 40" in both hemispheres in the respective 

months of summer. In the tropical latitudes between 20°N and 15"S, 

there is an excess of incoming radiation all year round. 

The radiation balance as shown in Figure 6 gives the net amount 

of energy deposited by the sun in the earth-atmosphere system. 

well known, however, that a substantial part of this energy is stored in 

the oceans and to some extent also in the land and atmosphere. Also part  

of this energy is spent in evaporation of water which may later be r e -  

leased in the atmosphere by condensation in the form of clouds. 

remaining part is termed the energy available for transportation across 

the latitudinal circles, both by the atmosphere and the oceans. 

shall now attempt to  evaluate the magnitude of energy involved in each 

It is 

The 

We 
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Figure 6. Radiation balance of the earth -atmosphere system 
in cal cm‘2 sec’l derived from Figures 4 and 5. 
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of these processes. 

4. Heat storage 

4.1 Storage in oceans 

The first comprehensive study of heat storage in the oceans, 

both as  a function of season and latitude, was made by Gabites (1950). 

The heat storage in the oceans was calculated, on a monthly basis, from 

the observed temperature increase in the first lOOm below the ocean 

surface. 

supposedly will  be uniformly heated or cooled for a given change in sur - 
face temperature. 

temperature of the ocean will correspond to a change of heat storage of 

the ocean by 7500 cal. F r i t z  (1958), however, pointed out that there is 

considerable phase l a g  in the variation of ocean temperatures with depth, 

and taking this into account reevaluated the heat storage in oceans. 

Using the more recent bathythermograph data analysis for the region 

of 20"N to 20"s and 12O"W to 160"W (East Pacific), Fritz derived 

empirical relations to convert the change in ocean surface temperature 

to the heat storage fo r  each individual month. From the observed su r -  

face temperatures over all the oceans of the northern hemisphere, F r i t z  

deduced the latitudinal variations of the amount of heat storage in each 

month for the northern hemisphere. These results were significantly 

different from those derived earlier by Gabites, especially for middle 

latitudes. More recently, Shroeder and Bryan (1960) have studied the 

heat storage in the Atlantic on an annual basis and their results agree 

with those of F r i t z  for the respective latitudinal belts. 

Gabites adopted an equivalent thickness of 75 m depth which 

He thus calculated that a change of 1 "C in the surface 

19 



For our computations of storage of heat in  oceans, we have 

adopted the following procedure: The monthly mean surface tempera - 
tures in the Atlantic, Pacific, and Indian Oceans a r e  collected from the 

United States Marine Climatic Atlas (1955), and a re  averaged for  every 

10" latitudinal belt between 60"N and 60"s. In order to convert the 

monthly changes in surface temperature into the amount of heat stored, 

w e  adopt the conversion factors published by F r i t z  fo r  the latitudinal 

belts between 20°N and 60'N. 

empirical relations, assuming that they also a r e  valid for the southern 

hemisphere with a time difference of six months. 

regions (20"N to Z O O S ) ,  however, we assume that only one conversion 

factor is valid for all the 12 months, and it is derived by averaging 

Fritz '  values for the whole year. It is observed that the variations in 

the monthly mean ocean surface temperatures in the equatorial regions 

a re  very small (of the order of 1 / 5  of the variation in middle latitudes) 

and any er ror  which may result from this assumption wil l  probably be 

small. The amount of storage is then weighted according to the 

fractional area of oceans in each latitudinal belt to obtain the ocean heat 

storage as shown in Figure 7. 

those published by Fr i tz ,  even though we have used more recent data on 

the surface temperature variations in the ocean. In spite of the large 

percentage cover of oceans in the southern hemisphere, the amount of 

heat stored is comparable to that in the northern hemisphere. This 

could be due to smaller changes in the surface temperature in  the 

southern hemisphere compared to the northern hemisphere. 

Fo r  Z O O S  to 6 0 ° S ,  we use the same 

For  the equatorial 

These values compare very well with 
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F i g  ure 7. Latitude and time distribution of the storage of heat in the 
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4.2 Land - 
The storage in land has been estimated by Gabites. 

the low heat capacity, the total heat storage in the land is very small, 

Because of 

about 5 percent of that stored in the oceans. For  our calculations, we 

therefore adopt the values given by Gabites. 

4.3 Atmosphere 

The heat storage in the atmosphere is also very small. Again 

Gabites has shown that on an average it is less than 10 percent of the 

total storage. 

findings of Davis (1963). 

These results a re  in agreement with the more recent 

We therefore adopt the values tabulated by 

Gabites for storage in the atmosphere. 

5. Net latent heat 

There is a significant amount of latent heat added to the atmo- 

sphere by water vapor when it condenses to form clouds. A large 

amount of heat is also used to evaporate water from the oceans and to 

some extent from the land. However, in any region, since the heat 

used up to evaporate water i s  not necessarily equal to the latent heat 

released by condensation, we get an imbalance of latent heat. 

imbalance, called the net latent heat, is equal to 600 (P- E) cal, where 

P is the precipitation and E is the evaporation, expressed in cm 

and 600 cal gm-' is the latent heat of water. 

This 

Estimates of the global distribution of evaporation on a seasonal 

basis have been made by several authors. 

monthly charts for the oceans have been published in an atlas by Budyko 

The most comprehensive 
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(1955). 

ration over the oceans f o r  each 10" latitudinal belt between 60"N and 

60 OS. 

to Budyko (1955) is  1130 mm year . Evaporation from the land, though 

considerably less, is not insignificant. Budyko (1956) gives an estimate 

of 450 mm year 

land for each 10" latitudinal belt. 

variation of evaporation from land for each 10 " latitudinal zone, we have 

adopted the following procedure: 

From these charts we have obtained the monthly mean evapo- 

The total evaporation from the oceans over the globe, according 
-1 

-1 and has tabulated annual evaporation estimates for 

In order to evaluate the monthly 

Budyko (1955) has given monthly values of evaporation for 

several land stations scattered around the globe. We have averaged the 

trend of these monthly variations for the stations which fall in the same 

10'latitudinal belt and assume this trend to be representative of the 

land areas  within this belt. 

a r e  no stations , we have judiciously interpolated the evaporation values 

between latitudes. 

been tabulated for each latitudinal belt so that their annual sums a re  con- 

sistent with the values published by Budyko (1956). 

However, since in some latitude belts there 

Monthly values of evaporation from land have then 

The total evaporation from a given latitude is derived by weight - 

ing the evaporation from oceans and from land according to the pro- 

portion of each area  in that latitudinal belt. 

The average annual evaporation for the whole globe i s  

930 mm year-' (Budyko)." 

%ecently Budyko (1963) has published a revised version of the Atlas of 
Radiation Balance in which global distribution of evaporation from both 
ocean and land is plotted for individual months. Also the average evapo- 
ration for the year is given as 1000 mm. These new values will change 
our evaluation of the net latent heat by a very small amount as we a re  
interested in the monthly and latitudinal variation of the difference be- 
tween evaporation and precipitation. 

23 



5.1 Precipitation 

In order to conserve the total amount of water in the hydro- 

sphere, the annual precipitation over the whole globe must equal the 

evaporation of 930 mm year-'. 

Brooks (1 927) made a comprehensive study of the precipitation 

values over the globe and has given monthly means for every 5" lati- 

tudinal belt separately for ocean and land. 

of 975 mm for  precipitation over the whole globe. 

of the rainfall over oceans has been made by Meinardus (1934), WGst 

(1936), and, more recently, by Drozdov (1953). 

by Drozdov f o r  oceans a re  consistently higher by 20 percent than those 

of Wttst (1936), but show the same distribution pattern. 

has recently given a revised estimate of the precipitation over oceans, 

but according to Malkus (1962), values given by Drozdov are  more r e  - 

liable. Drozdov's estimates agree better with those of Meinardus and 

He gave an annual estimate 

Extensive analysis 

The values tabulated 

Wust (1957) 

therefore with those given by Brooks. We have therefore corrected the 

monthly mean values tabulated by Brooks to obtain a total annual preci- 

pitation of 930 mm year A correction of 0.952 

is applied to Brooks' rainfall data to obtain an agreement with Budyko's 

-1 over the whole globe. 

estimate of annual evaporation over the whole globe. 

5.2 Net latent heat 

The net latent heat deposited in the atmosphere is calculated by 

taking the difference between the amount of precipitation and evaporation 

for each month and for each latitudinal belt. 

distribution of net latent heat thus obtained in cal cm-2 day-l. 

In Figure 8 we show the 

This 
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Figure 8. Latitude and time distribution of the net latent heat in the 
earth 's  atmosphere in cal cm'2 day"; ( - )  heat lost by 
the atmosphere because of evaporation over precipitation, 
(t) heat gained by the atmosphere by the excess of 
precipitation over evaporation. 
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figure shows the excess of precipitation over evaporation in the equatorial 

regions during most of the year. 

show an excess of evaporation throughout the year. 

The subtropical belts, on the other hand, 

6. Net heat available for transDort 

The distribution of the net heat available for transport (NHAT), 

shown in Figure 9, is obtained by adding radiation balance, the storages 

and net latent heat. This heat is available for transport across the lati- 

tudinal circles by ocean currents and by winds. 

comment on the accuracy of these quantitative estimates of NHAT. 

numbers result from differences of the three large quantities which 

It seems difficult to 

These 

inherently have some er rors  due to the various assumptions made in their 

evaluation. It is, nevertheless, expected that the distribution of M A T  

is physically meaningful and could be compared with some observed 

characteristics of the circulation in the atmosphere and oceans. 

Figure 9 indicates a large excess of NHAT in the equatorial 

latitudes almost throughout the year. 

radiation balance (Fig .  6)  and positive net latent heat (Fig. 8), arising 

from an excess of precipitation over evaporation at  these latitudes. The 

ocean storage (Fig .  7 )  in the equatorial regions is  too small to influence 

the balance. 

The reason for this is the positive 

In February and March the maximum of this equatorial excess 

of NHAT occurs at lo's, while in July and August, following the thermal 

equator, the maximum moves to 10'N. 

In the subtropical latitudes, the radiation balance (Fig. 6)  and 

net latent heat (Fig. 8) appear to vary in phase with each other, being 
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Figure 9. Latitude and time distribution of the net heat available 
for  transport by the atmosphere and oceans across the 
latitude circles. 
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largest in  summer and smallest in winter. On the other hand, the total 

heat storage in the oceans is equal in magnitude to the s u m  of radiation 

balance and the net latent heat but has an opposite phase. Consequently, 

in the subtropical latitudes, there is little energy available for transport 

through most of the year. In the case of the northern hemisphere, Fr i tz  

(1958) has already shown that between 20 and 40' latitudes the atmo- 

sphere may be in  equilibrium throughout the year. 

In the middle latitudes and toward the poles the energy balance 

is predominantly negative. 

An examination of Figure 9 reveals a much stronger latitudinal 

gradient of the " A T  in the southern hemisphere as  compared to the 

northern hemisphere. 

that between 0 and 20's as much as 80 percent of the energy may be 

transported southward by the oceans. Figure 9 indicates that, in the 

southern hemisphere, the ocean currents may be playing a major role 

in  transporting heat across the latitudes. This appears to be the case 

especially in the months February, March, and April when the latitudinal 

gradient of " A T  is particularly large in the southern hemisphere. 

On an annual basis, Budyko (1956) has estimated 
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